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OPTIMIZATION OF THE STRESS TENSOR IN AN ELASTIC
ANISOTROPIC HALF-PLANE

V. A. Fil’shtinskii and L. A. Fil’shtinskii UDC 539.3

We consider the problem of optimizing the components of the stress tensor and their integral characteristics.
The normal and tangential forces prescribed on the boundary of the elastic anisotropic half-plane y > 0
are chosen from certain funclion classes of curvilinear strip type.

Bibliography: 2 titles.

We consider an elastic anisotropic plate —o0o < z < 00, ¥ 2 0 of thickness h with characteristic numbers p}
and p3 (cf. [1]). For simplicity we shall assume that pu} = ip; (#; € R, g1 < pg). On the boundary of the
half-plane there are normal and tangential forces N(z) and T'(z) respectively.

The values of the components of the stress tensor {0;,0y,7:y} at each point z (Imz > 0) are defined
by the formulas

—2Re (p3®)(21) + p385(22)),
= —2Re(®)(21) + ®3(22)), 1)
Tey = —2Re [Z(H1‘I’Il(zl) + P'2<I’2(22))]’ 2j =T + ﬂ;y'

We fix a point z (Im z > 0). In the class of bounded functions
IN(z)|<iy (z€UCR); |T(2)|<ir (z€eVER) (2)
we shall seek those on which the maximal values

oy = max o], o, =max|oy|, 7, =max|r] (3)
or certain linear combinations of them are attained.
We are interested in the problems of computing the quantities

b /a,dS’, afmax
D

0; = max

/adeI, 'rfy = max /szdX‘, (4)
D D

where D is a line or a closed region of the upper half-plane.
In what follows we also consider the cases when

An(z) £ N(z) < Bn(z) (z € U), Ar(z) <T(z) < Br(z) (z€V). (5)

The integral representations of the functions ®/(z;) have the form [1]

' Z/‘2N(6 +T(£) . 1) = Z,Lth £)+T(£)
hila) = 27fh(#2 - 1) / - @ Hl=)= 27Th(/~£2 - ) / — 2z . ©

We can now find

1 o0
Th{pz — p1) /_ °°[Qk(f;f:)N (€) + Ru(&;2)T(E)[dE, k=1,2,3, )
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where

Qr = (=1 pipap(&2), (k=1,2),
Q3 = pip2(€ — $)P2(f; z),
Ry = (-1)*(¢ — 2)pr(§2) (k=1,2), Ry =yp(&2),

pl(&iz) = #f - 'ug y 01 =0z, 02 = 0y,
(€ -2 +piy®  (E-2)+p3y’ !

N 1 1
paldi=) = - +uly?  (E—2) +p3y?
We now introduce the function classes
My = {N(z) € L°(U) : An(z) < N(z) < Bu(3), o € U};
Mr = {T(z) € L(V): Az(z) < T(z) < Br(s), = € V},

g3 = Tzy.

in which
An(z) £ Bn(z) (€ L=(V)), Ar(z) < Br(z)(€ L=(V)),
and L*>°(W) is the Banach space of essentially bounded functions on the set W C R. We set

Ny(2) = N(z) - 5{An(#) + Bu(a)], Ta(z) = T(z) - 5[Ar(z) + Br(z)]

It is clear that

| déf

IMi(2)| < 31Bn(z) - An(2)] E On(o)
def

[Tu(2)| < 51Br(a) - A2(@)| X Cr()

We obtain estimates of the values of o, oy, and 7., by relying on the following easily proved proposition:

Lemma. Let Q, f, A, and B be the functions of [2], which are in L>(W) and integrable over W, and let
A(z) < f(z) < B(z). Then

max
f:A<f<B

[ e@is@ e =1l + [ c@le@ldz, ®
w w

where

C@) = 51B(a) - A)). 7= ; [146)+ B@)Q@) .
w
Equality holds in (8) at the functions

fi(e) = %[A(z) + B(z)] + C(z) -sgn (vQ(z)) (v #0), f(z) =C(z)-sgnQ(z) (v =0). (9)

If we apply the lemma to (7), we obtain

1
i loel = ——llwl + bl + U/ (& on© de + [ IR&2ICr)

My ,Mr
|4

where

e+ [ QulEalAN(© + Bu(©)]ds
U

1= [ Relé Ar() + Br(©)] .
v
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In the case y1 # 0, yn # 0 the largest value of o, is attained when

Nepi(2) = 5AN(2) + Br(z)] + On(e)sgn (v Qx(z; 7)),

1 (10)
Topt(z) = E[AT(z) + Br(z)] + Cr(z)sgn (yrR:(z, 2)).

If y7 =0 and yn =0, then
Nopt(z) = Cn(z)sgn Q. (z; 2), (1)
Topt(x) = CT(x)Sgn Rz(xa Z)'

In the simplest case of (11) one should take account of the behavior of the functions Q; := Q, and R; := R;:
Qi1(§2) S0 VEER, sgnRyi(€2) =sgn(f —z) (z=Rez)Vz €R.
In particular if U = (¢ — @,z + ) and T(§) = 0, then

max |o;| = _2mpaly [ﬂz arctan —— §1 arctan =
z| — - -—1.
INI<In wh(puz — p1) B2y K1y

Similarly we obtain

oy [
Th(pe — p1)

pa 2l p#(z® + 13y®)
wh(pz — 1) pi(o? + piy?)

max |oy]

«a a
o arctan — — pg arctan —— max (Tgy| =
IN[<lw my " IN|<in 724

H2Y
The optimal actions are Nopi(€) = Iy (for o, and o) and Nope(€) = Insgn (€ — z) (for 14y)-

The expansion of the sphere of activity of a bounded load N(¢) (|N(¢)| < In, |z — €] < a) for an
increasing « leads to a monotone increase of the quantity max |o;|. The limiting values are

2y In H_z.

pip2lN
Th(ps —p1) M

h Y

max |o,| = max |oy| = max |7,y =

N

h 7

Suppose the rectifiable arc (L) is given by the equations
z=2z(t), y=y(t), a<t<p

and has length L. The average value »
Tz = 1 (z,y)dl
: =7 o:\Z,Y)at,
(L)
computed with respect to the boundary loads N(z) and T'(z), is minimized using the lemma. Let (L) : z =
0,y =% (0 £t < H) under the restrictions (11). We find
¢ + piH?
§* + 3 H?

N({)mzp2 In + T(¢) (,ug arctan pafl {4 arctan EI—H-)] dé.

_ ______1— ®
s = THR(us — ) f_oo [ ¢ ¢

The coefficient of N(£) is nonnegative for all £ € (—o0,oc) and the sign of the coefficient of T(£) coincides
with the sign of {. Therefore under the restrictions (11)

_ 1 f1 2 £ + piH? / po H mH
.= - t dt.
max & WHh(uz—Nl)[ > U/ln€2+#§H2 d§+v (Marctan ¢ {1 arctan ¢ )sgnﬁ I3

The optimal loads are
NOP'-(I) =~y (‘T(U)v Topt(l‘) = lngn (:C € V)
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Nowlet (L):z =t y=1(0<t<H), 0< N(z) < In(l —|z}), N(z) =0 (Jz| > 1), T(z) = 0. With

respect to
1
7—“zy = TI- / Try(xyy) dl

(L)

we obtain the following result

A1 S (€ = H)? + B3)IE% + )
Ty = 2rHh(pg — p1) #1) / N(§)In (€= H)? + p2][e2 + p2] dé, (12)
- / (- 1) de, H>2,

papaln

max Tzy = ——————2th(#2 — ‘ul)

max ( ] -, [ ?(1 ~ D) df), H<?,

where Q(€) is the coefficient of N(£) in :(12). The optimal function is

—1o 1zl z:sen(vQ(z)) = +1,
Nopi(e) = I { 0, r:sgn(yQ(z)) = ~-1lor |z| > 1.

Here .
1
1=3 [ (-leDQE)ds,

and the sign of v depends on the specific values of py, p;, and H.
Using the example of optimizing o, at a point one can see the advantage of a pulsed boundary action
in comparison with a (“smoother”) integral action. We consider functions of the form

Ni(€) = Zdas &) Y ld|<Ily, z-1<& <z+aq,

(13)
T(§) = Zd#6(€ — M) Z |du| <lp, z—a<n,<z+a,
I

and
z+a

z+a
M@ [l s, TO: [ Im©lde < (14)
In the case (13) we shall use the notation Ny(§)d€ = doy(€), Ti(§) d€ = do(€). Here oy and o3 are
jump functions having bounded variation equal to the sum of the absolute values of the jumps. Relation
(7) implies the inequality

Io'zl <

1
————————[ max ;2)|[Varo + max |Ri(&;2)- Varoq(£)].
- #1)[[5_”9 @& 2)[Varo1(€) + max [Ra(¢ ) Q)
Equality is attained at elementary functions of the form (13) with a single jump at the point of absolute
maximum of the function Q;(¢;z) (R1(€;z) for the second term; one can also take two jumps symmetric
about the point z). It is easy to see that & = x4 y./Ii; i3 is the point of absolute maximum of the function
Q; and that ¢} = z + a is the same point for the function R;. Thus if y /g1 < a, then

1 [ papatn a®(uy + p2)lr
max o, = — . 15
RV = R Pl ) T @ @ + ) (18)

The optimal actions are

Ni(§) = IN6(€ — yy/pap2), Th(§) =76(€ — a).
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In the case y,/fipz > a the optimal actions are of the same type:

Ny(§) = Inb6(E - a), T2(€) =Ir(€ — a).

Consider functions of class (14). The following sharp inequalities hold:

0 € s [ mexl@u(6 D) [ NI +maxIBEl [ T©)Ie
j£-z|<a |6—z|<a
1
< m[llv -max |Qy| + I - max | Ry [].

It is easy to exhibit approximate identities N3 z(£), T2,,(£) of class (14) such that the values of |o,]
corresponding to them are monotone decreasing and tend to the value (15).
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